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Status of this Memo

  This RFC describes an existing protocol for exchanging routing
  information among gateways and other hosts.  It is intended to be
  used as a basis for developing gateway software for use in the
  Internet community.  Distribution of this memo is unlimited.
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Overview

  This memo is intended to do the following things:

     - Document a protocol and algorithms that are currently in
       wide use for routing, but which have never been formally
       documented.

     - Specify some improvements in the algorithms which will
       improve stability of the routes in large networks.  These
       improvements do not introduce any incompatibility with
       existing implementations.  They are to be incorporated into
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       all implementations of this protocol.

     - Suggest some optional features to allow greater
       configurability and control.  These features were developed
       specifically to solve problems that have shown up in actual
       use by the NSFnet community.  However, they should have more
       general utility.

  The Routing Information Protocol (RIP) described here is loosely
  based on the program "routed", distributed with the 4.3 Berkeley
  Software Distribution.  However, there are several other
  implementations of what is supposed to be the same protocol.
  Unfortunately, these various implementations disagree in various
  details.  The specifications here represent a combination of features
  taken from various implementations.  We believe that a program
  designed according to this document will interoperate with routed,
  and with all other implementations of RIP of which we are aware.

  Note that this description adopts a different view than most existing
  implementations about when metrics should be incremented.  By making
  a corresponding change in the metric used for a local network, we
  have retained compatibility with other existing implementations.  See
  section 3.6 for details on this issue.

1. Introduction

  This memo describes one protocol in a series of routing protocols
  based on the Bellman-Ford (or distance vector) algorithm.  This
  algorithm has been used for routing computations in computer networks
  since the early days of the ARPANET.  The particular packet formats
  and protocol described here are based on the program "routed", which
  is included with the Berkeley distribution of Unix.  It has become a
  de facto standard for exchange of routing information among gateways
  and hosts.  It is implemented for this purpose by most commercial
  vendors of IP gateways.  Note, however, that many of these vendors
  have their own protocols which are used among their own gateways.

  This protocol is most useful as an "interior gateway protocol".  In a
  nationwide network such as the current Internet, it is very unlikely
  that a single routing protocol will used for the whole network.
  Rather, the network will be organized as a collection of "autonomous
  systems".  An autonomous system will in general be administered by a
  single entity, or at least will have some reasonable degree of
  technical and administrative control.  Each autonomous system will
  have its own routing technology.  This may well be different for
  different autonomous systems.  The routing protocol used within an
  autonomous system is referred to as an interior gateway protocol, or
  "IGP".  A separate protocol is used to interface among the autonomous
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  systems.  The earliest such protocol, still used in the Internet, is
  "EGP" (exterior gateway protocol).  Such protocols are now usually
  referred to as inter-AS routing protocols.  RIP was designed to work
  with moderate-size networks using reasonably homogeneous technology.
  Thus it is suitable as an IGP for many campuses and for regional
  networks using serial lines whose speeds do not vary widely.  It is
  not intended for use in more complex environments.  For more
  information on the context into which RIP is expected to fit, see
  Braden and Postel [3].

  RIP is one of a class of algorithms known as "distance vector
  algorithms".  The earliest description of this class of algorithms
  known to the author is in Ford and Fulkerson [6].  Because of this,
  they are sometimes known as Ford-Fulkerson algorithms.  The term
  Bellman-Ford is also used.  It comes from the fact that the
  formulation is based on Bellman's equation, the basis of "dynamic
  programming".  (For a standard introduction to this area, see [1].)
  The presentation in this document is closely based on [2].  This text
  contains an introduction to the mathematics of routing algorithms.
  It describes and justifies several variants of the algorithm
  presented here, as well as a number of other related algorithms.  The
  basic algorithms described in this protocol were used in computer
  routing as early as 1969 in the ARPANET.  However, the specific
  ancestry of this protocol is within the Xerox network protocols.  The
  PUP protocols (see [4]) used the Gateway Information Protocol to
  exchange routing information.  A somewhat updated version of this
  protocol was adopted for the Xerox Network Systems (XNS)
  architecture, with the name Routing Information Protocol.  (See [7].)
  Berkeley's routed is largely the same as the Routing Information
  Protocol, with XNS addresses replaced by a more general address
  format capable of handling IP and other types of address, and with
  routing updates limited to one every 30 seconds.  Because of this
  similarity, the term Routing Information Protocol (or just RIP) is
  used to refer to both the XNS protocol and the protocol used by
  routed.

  RIP is intended for use within the IP-based Internet.  The Internet
  is organized into a number of networks connected by gateways.  The
  networks may be either point-to-point links or more complex networks
  such as Ethernet or the ARPANET.  Hosts and gateways are presented
  with IP datagrams addressed to some host.  Routing is the method by
  which the host or gateway decides where to send the datagram.  It may
  be able to send the datagram directly to the destination, if that
  destination is on one of the networks that are directly connected to
  the host or gateway.  However, the interesting case is when the
  destination is not directly reachable.  In this case, the host or
  gateway attempts to send the datagram to a gateway that is nearer the
  destination.  The goal of a routing protocol is very simple: It is to
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  supply the information that is needed to do routing.

1.1. Limitations of the protocol

  This protocol does not solve every possible routing problem.  As
  mentioned above, it is primary intended for use as an IGP, in
  reasonably homogeneous networks of moderate size.  In addition, the
  following specific limitations should be mentioned:

     - The protocol is limited to networks whose longest path
       involves 15 hops.  The designers believe that the basic
       protocol design is inappropriate for larger networks.  Note
       that this statement of the limit assumes that a cost of 1
       is used for each network.  This is the way RIP is normally
       configured.  If the system administrator chooses to use
       larger costs, the upper bound of 15 can easily become a
       problem.

     - The protocol depends upon "counting to infinity" to resolve
       certain unusual situations.  (This will be explained in the
       next section.)  If the system of networks has several
       hundred networks, and a routing loop was formed involving
       all of them, the resolution of the loop would require
       either much time (if the frequency of routing updates were
       limited) or bandwidth (if updates were sent whenever
       changes were detected).  Such a loop would consume a large
       amount of network bandwidth before the loop was corrected.
       We believe that in realistic cases, this will not be a
       problem except on slow lines.  Even then, the problem will
       be fairly unusual, since various precautions are taken that
       should prevent these problems in most cases.

     - This protocol uses fixed "metrics" to compare alternative
       routes.  It is not appropriate for situations where routes
       need to be chosen based on real-time parameters such a
       measured delay, reliability, or load.  The obvious
       extensions to allow metrics of this type are likely to
       introduce instabilities of a sort that the protocol is not
       designed to handle.

1.2. Organization of this document

  The main body of this document is organized into two parts, which
  occupy the next two sections:

     2   A conceptual development and justification of distance vector
         algorithms in general.
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     3   The actual protocol description.

  Each of these two sections can largely stand on its own.  Section 2
  attempts to give an informal presentation of the mathematical
  underpinnings of the algorithm.  Note that the presentation follows a
  "spiral" method.  An initial, fairly simple algorithm is described.
  Then refinements are added to it in successive sections.  Section 3
  is the actual protocol description.  Except where specific references
  are made to section 2, it should be possible to implement RIP
  entirely from the specifications given in section 3.

2. Distance Vector Algorithms

  Routing is the task of finding a path from a sender to a desired
  destination.  In the IP "Catenet model" this reduces primarily to a
  matter of finding gateways between networks.  As long as a message
  remains on a single network or subnet, any routing problems are
  solved by technology that is specific to the network.  For example,
  the Ethernet and the ARPANET each define a way in which any sender
  can talk to any specified destination within that one network.  IP
  routing comes in primarily when messages must go from a sender on one
  such network to a destination on a different one.  In that case, the
  message must pass through gateways connecting the networks.  If the
  networks are not adjacent, the message may pass through several
  intervening networks, and the gateways connecting them.  Once the
  message gets to a gateway that is on the same network as the
  destination, that network's own technology is used to get to the
  destination.

  Throughout this section, the term "network" is used generically to
  cover a single broadcast network (e.g., an Ethernet), a point to
  point line, or the ARPANET.  The critical point is that a network is
  treated as a single entity by IP.  Either no routing is necessary (as
  with a point to point line), or that routing is done in a manner that
  is transparent to IP, allowing IP to treat the entire network as a
  single fully-connected system (as with an Ethernet or the ARPANET).
  Note that the term "network" is used in a somewhat different way in
  discussions of IP addressing.  A single IP network number may be
  assigned to a collection of networks, with "subnet" addressing being
  used to describe the individual networks.  In effect, we are using
  the term "network" here to refer to subnets in cases where subnet
  addressing is in use.

  A number of different approaches for finding routes between networks
  are possible.  One useful way of categorizing these approaches is on
  the basis of the type of information the gateways need to exchange in
  order to be able to find routes.  Distance vector algorithms are
  based on the exchange of only a small amount of information.  Each
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  entity (gateway or host) that participates in the routing protocol is
  assumed to keep information about all of the destinations within the
  system.  Generally, information about all entities connected to one
  network is summarized by a single entry, which describes the route to
  all destinations on that network.  This summarization is possible
  because as far as IP is concerned, routing within a network is
  invisible.  Each entry in this routing database includes the next
  gateway to which datagrams destined for the entity should be sent.
  In addition, it includes a "metric" measuring the total distance to
  the entity.  Distance is a somewhat generalized concept, which may
  cover the time delay in getting messages to the entity, the dollar
  cost of sending messages to it, etc.  Distance vector algorithms get
  their name from the fact that it is possible to compute optimal
  routes when the only information exchanged is the list of these
  distances.  Furthermore, information is only exchanged among entities
  that are adjacent, that is, entities that share a common network.

  Although routing is most commonly based on information about
  networks, it is sometimes necessary to keep track of the routes to
  individual hosts.  The RIP protocol makes no formal distinction
  between networks and hosts.  It simply describes exchange of
  information about destinations, which may be either networks or
  hosts.  (Note however, that it is possible for an implementor to
  choose not to support host routes.  See section 3.2.)  In fact, the
  mathematical developments are most conveniently thought of in terms
  of routes from one host or gateway to another.  When discussing the
  algorithm in abstract terms, it is best to think of a routing entry
  for a network as an abbreviation for routing entries for all of the
  entities connected to that network.  This sort of abbreviation makes
  sense only because we think of networks as having no internal
  structure that is visible at the IP level.  Thus, we will generally
  assign the same distance to every entity in a given network.

  We said above that each entity keeps a routing database with one
  entry for every possible destination in the system.  An actual
  implementation is likely to need to keep the following information
  about each destination:

     - address: in IP implementations of these algorithms, this
       will be the IP address of the host or network.

     - gateway: the first gateway along the route to the
       destination.

     - interface: the physical network which must be used to reach
       the first gateway.

     - metric: a number, indicating the distance to the
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       destination.

     - timer: the amount of time since the entry was last updated.

  In addition, various flags and other internal information will
  probably be included.  This database is initialized with a
  description of the entities that are directly connected to the
  system.  It is updated according to information received in messages
  from neighboring gateways.

  The most important information exchanged by the hosts and gateways is
  that carried in update messages.  Each entity that participates in
  the routing scheme sends update messages that describe the routing
  database as it currently exists in that entity.  It is possible to
  maintain optimal routes for the entire system by using only
  information obtained from neighboring entities.  The algorithm used
  for that will be described in the next section.

  As we mentioned above, the purpose of routing is to find a way to get
  datagrams to their ultimate destinations.  Distance vector algorithms
  are based on a table giving the best route to every destination in
  the system.  Of course, in order to define which route is best, we
  have to have some way of measuring goodness.  This is referred to as
  the "metric".

  In simple networks, it is common to use a metric that simply counts
  how many gateways a message must go through.  In more complex
  networks, a metric is chosen to represent the total amount of delay
  that the message suffers, the cost of sending it, or some other
  quantity which may be minimized.  The main requirement is that it
  must be possible to represent the metric as a sum of "costs" for
  individual hops.

  Formally, if it is possible to get from entity i to entity j directly
  (i.e., without passing through another gateway between), then a cost,
  d(i,j), is associated with the hop between i and j.  In the normal
  case where all entities on a given network are considered to be the
  same, d(i,j) is the same for all destinations on a given network, and
  represents the cost of using that network.  To get the metric of a
  complete route, one just adds up the costs of the individual hops
  that make up the route.  For the purposes of this memo, we assume
  that the costs are positive integers.

  Let D(i,j) represent the metric of the best route from entity i to
  entity j.  It should be defined for every pair of entities.  d(i,j)
  represents the costs of the individual steps.  Formally, let d(i,j)
  represent the cost of going directly from entity i to entity j.  It
  is infinite if i and j are not immediate neighbors. (Note that d(i,i)
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  is infinite.  That is, we don't consider there to be a direct
  connection from a node to itself.)  Since costs are additive, it is
  easy to show that the best metric must be described by

            D(i,i) = 0,                      all i
            D(i,j) = min [d(i,k) + D(k,j)],  otherwise
                      k

  and that the best routes start by going from i to those neighbors k
  for which d(i,k) + D(k,j) has the minimum value.  (These things can
  be shown by induction on the number of steps in the routes.)  Note
  that we can limit the second equation to k's that are immediate
  neighbors of i.  For the others, d(i,k) is infinite, so the term
  involving them can never be the minimum.

  It turns out that one can compute the metric by a simple algorithm
  based on this.  Entity i gets its neighbors k to send it their
  estimates of their distances to the destination j.  When i gets the
  estimates from k, it adds d(i,k) to each of the numbers.  This is
  simply the cost of traversing the network between i and k.  Now and
  then i compares the values from all of its neighbors and picks the
  smallest.

  A proof is given in [2] that this algorithm will converge to the
  correct estimates of D(i,j) in finite time in the absence of topology
  changes.  The authors make very few assumptions about the order in
  which the entities send each other their information, or when the min
  is recomputed.  Basically, entities just can't stop sending updates
  or recomputing metrics, and the networks can't delay messages
  forever.  (Crash of a routing entity is a topology change.)  Also,
  their proof does not make any assumptions about the initial estimates
  of D(i,j), except that they must be non-negative.  The fact that
  these fairly weak assumptions are good enough is important.  Because
  we don't have to make assumptions about when updates are sent, it is
  safe to run the algorithm asynchronously.  That is, each entity can
  send updates according to its own clock.  Updates can be dropped by
  the network, as long as they don't all get dropped.  Because we don't
  have to make assumptions about the starting condition, the algorithm
  can handle changes.  When the system changes, the routing algorithm
  starts moving to a new equilibrium, using the old one as its starting
  point.  It is important that the algorithm will converge in finite
  time no matter what the starting point.  Otherwise certain kinds of
  changes might lead to non-convergent behavior.

  The statement of the algorithm given above (and the proof) assumes
  that each entity keeps copies of the estimates that come from each of
  its neighbors, and now and then does a min over all of the neighbors.
  In fact real implementations don't necessarily do that.  They simply
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  remember the best metric seen so far, and the identity of the
  neighbor that sent it.  They replace this information whenever they
  see a better (smaller) metric.  This allows them to compute the
  minimum incrementally, without having to store data from all of the
  neighbors.

  There is one other difference between the algorithm as described in
  texts and those used in real protocols such as RIP: the description
  above would have each entity include an entry for itself, showing a
  distance of zero.  In fact this is not generally done.  Recall that
  all entities on a network are normally summarized by a single entry
  for the network.  Consider the situation of a host or gateway G that
  is connected to network A.  C represents the cost of using network A
  (usually a metric of one).  (Recall that we are assuming that the
  internal structure of a network is not visible to IP, and thus the
  cost of going between any two entities on it is the same.)  In
  principle, G should get a message from every other entity H on
  network A, showing a cost of 0 to get from that entity to itself.  G
  would then compute C + 0 as the distance to H.  Rather than having G
  look at all of these identical messages, it simply starts out by
  making an entry for network A in its table, and assigning it a metric
  of C.  This entry for network A should be thought of as summarizing
  the entries for all other entities on network A.  The only entity on
  A that can't be summarized by that common entry is G itself, since
  the cost of going from G to G is 0, not C.  But since we never need
  those 0 entries, we can safely get along with just the single entry
  for network A.  Note one other implication of this strategy: because
  we don't need to use the 0 entries for anything, hosts that do not
  function as gateways don't need to send any update messages.  Clearly
  hosts that don't function as gateways (i.e., hosts that are connected
  to only one network) can have no useful information to contribute
  other than their own entry D(i,i) = 0.  As they have only the one
  interface, it is easy to see that a route to any other network
  through them will simply go in that interface and then come right
  back out it.  Thus the cost of such a route will be greater than the
  best cost by at least C.  Since we don't need the 0 entries, non-
  gateways need not participate in the routing protocol at all.

  Let us summarize what a host or gateway G does.  For each destination
  in the system, G will keep a current estimate of the metric for that
  destination (i.e., the total cost of getting to it) and the identity
  of the neighboring gateway on whose data that metric is based.  If
  the destination is on a network that is directly connected to G, then
  G simply uses an entry that shows the cost of using the network, and
  the fact that no gateway is needed to get to the destination.  It is
  easy to show that once the computation has converged to the correct
  metrics, the neighbor that is recorded by this technique is in fact
  the first gateway on the path to the destination.  (If there are
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  several equally good paths, it is the first gateway on one of them.)
  This combination of destination, metric, and gateway is typically
  referred to as a route to the destination with that metric, using
  that gateway.

  The method so far only has a way to lower the metric, as the existing
  metric is kept until a smaller one shows up.  It is possible that the
  initial estimate might be too low.  Thus, there must be a way to
  increase the metric.  It turns out to be sufficient to use the
  following rule: suppose the current route to a destination has metric
  D and uses gateway G.  If a new set of information arrived from some
  source other than G, only update the route if the new metric is
  better than D.  But if a new set of information arrives from G
  itself, always update D to the new value.  It is easy to show that
  with this rule, the incremental update process produces the same
  routes as a calculation that remembers the latest information from
  all the neighbors and does an explicit minimum.  (Note that the
  discussion so far assumes that the network configuration is static.
  It does not allow for the possibility that a system might fail.)

  To summarize, here is the basic distance vector algorithm as it has
  been developed so far.  (Note that this is not a statement of the RIP
  protocol.  There are several refinements still to be added.)  The
  following procedure is carried out by every entity that participates
  in the routing protocol.  This must include all of the gateways in
  the system.  Hosts that are not gateways may participate as well.

      - Keep a table with an entry for every possible destination
       in the system.  The entry contains the distance D to the
       destination, and the first gateway G on the route to that
       network.  Conceptually, there should be an entry for the
       entity itself, with metric 0, but this is not actually
       included.

     - Periodically, send a routing update to every neighbor.  The
       update is a set of messages that contain all of the
       information from the routing table.  It contains an entry
       for each destination, with the distance shown to that
       destination.

     - When a routing update arrives from a neighbor G', add the
       cost associated with the network that is shared with G'.
       (This should be the network over which the update arrived.)
       Call the resulting distance D'.  Compare the resulting
       distances with the current routing table entries.  If the
       new distance D' for N is smaller than the existing value D,
       adopt the new route.  That is, change the table entry for N
       to have metric D' and gateway G'.  If G' is the gateway
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       from which the existing route came, i.e., G' = G, then use
       the new metric even if it is larger than the old one.

2.1. Dealing with changes in topology

  The discussion above assumes that the topology of the network is
  fixed.  In practice, gateways and lines often fail and come back up.
  To handle this possibility, we need to modify the algorithm slightly.
  The theoretical version of the algorithm involved a minimum over all
  immediate neighbors.  If the topology changes, the set of neighbors
  changes.  Therefore, the next time the calculation is done, the
  change will be reflected.  However, as mentioned above, actual
  implementations use an incremental version of the minimization.  Only
  the best route to any given destination is remembered.  If the
  gateway involved in that route should crash, or the network
  connection to it break, the calculation might never reflect the
  change.  The algorithm as shown so far depends upon a gateway
  notifying its neighbors if its metrics change.  If the gateway
  crashes, then it has no way of notifying neighbors of a change.

  In order to handle problems of this kind, distance vector protocols
  must make some provision for timing out routes.  The details depend
  upon the specific protocol.  As an example, in RIP every gateway that
  participates in routing sends an update message to all its neighbors
  once every 30 seconds.  Suppose the current route for network N uses
  gateway G.  If we don't hear from G for 180 seconds, we can assume
  that either the gateway has crashed or the network connecting us to
  it has become unusable.  Thus, we mark the route as invalid.  When we
  hear from another neighbor that has a valid route to N, the valid
  route will replace the invalid one.  Note that we wait for 180
  seconds before timing out a route even though we expect to hear from
  each neighbor every 30 seconds.  Unfortunately, messages are
  occasionally lost by networks.  Thus, it is probably not a good idea
  to invalidate a route based on a single missed message.

  As we will see below, it is useful to have a way to notify neighbors
  that there currently isn't a valid route to some network.  RIP, along
  with several other protocols of this class, does this through a
  normal update message, by marking that network as unreachable.  A
  specific metric value is chosen to indicate an unreachable
  destination; that metric value is larger than the largest valid
  metric that we expect to see.  In the existing implementation of RIP,
  16 is used.  This value is normally referred to as "infinity", since
  it is larger than the largest valid metric.  16 may look like a
  surprisingly small number.  It is chosen to be this small for reasons
  that we will see shortly.  In most implementations, the same
  convention is used internally to flag a route as invalid.
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2.2. Preventing instability

  The algorithm as presented up to this point will always allow a host
  or gateway to calculate a correct routing table.  However, that is
  still not quite enough to make it useful in practice.  The proofs
  referred to above only show that the routing tables will converge to
  the correct values in finite time.  They do not guarantee that this
  time will be small enough to be useful, nor do they say what will
  happen to the metrics for networks that become inaccessible.

  It is easy enough to extend the mathematics to handle routes becoming
  inaccessible.  The convention suggested above will do that.  We
  choose a large metric value to represent "infinity".  This value must
  be large enough that no real metric would ever get that large.  For
  the purposes of this example, we will use the value 16.  Suppose a
  network becomes inaccessible.  All of the immediately neighboring
  gateways time out and set the metric for that network to 16.  For
  purposes of analysis, we can assume that all the neighboring gateways
  have gotten a new piece of hardware that connects them directly to
  the vanished network, with a cost of 16.  Since that is the only
  connection to the vanished network, all the other gateways in the
  system will converge to new routes that go through one of those
  gateways.  It is easy to see that once convergence has happened, all
  the gateways will have metrics of at least 16 for the vanished
  network.  Gateways one hop away from the original neighbors would end
  up with metrics of at least 17; gateways two hops away would end up
  with at least 18, etc.  As these metrics are larger than the maximum
  metric value, they are all set to 16.  It is obvious that the system
  will now converge to a metric of 16 for the vanished network at all
  gateways.

  Unfortunately, the question of how long convergence will take is not
  amenable to quite so simple an answer.  Before going any further, it
  will be useful to look at an example (taken from [2]).  Note, by the
  way, that what we are about to show will not happen with a correct
  implementation of RIP.  We are trying to show why certain features
  are needed.  Note that the letters correspond to gateways, and the
  lines to networks.

           A-----B
            \   / \
             \ /  |
              C  /    all networks have cost 1, except
              | /     for the direct link from C to D, which
              |/      has cost 10
              D
              |<=== target network

Hedrick                                                        [Page 12]



RFC 1058              Routing Information Protocol             June 1988

  Each gateway will have a table showing a route to each network.

  However, for purposes of this illustration, we show only the routes
  from each gateway to the network marked at the bottom of the diagram.

           D:  directly connected, metric 1
           B:  route via D, metric 2
           C:  route via B, metric 3
           A:  route via B, metric 3

  Now suppose that the link from B to D fails.  The routes should now
  adjust to use the link from C to D.  Unfortunately, it will take a
  while for this to this to happen.  The routing changes start when B
  notices that the route to D is no longer usable.  For simplicity, the
  chart below assumes that all gateways send updates at the same time.
  The chart shows the metric for the target network, as it appears in
  the routing table at each gateway.

       time ------>

       D: dir, 1   dir, 1   dir, 1   dir, 1  ...  dir, 1   dir, 1
       B: unreach  C,   4   C,   5   C,   6       C,  11   C,  12
       C: B,   3   A,   4   A,   5   A,   6       A,  11   D,  11
       A: B,   3   C,   4   C,   5   C,   6       C,  11   C,  12

       dir = directly connected
       unreach = unreachable

  Here's the problem:  B is able to get rid of its failed route using a
  timeout mechanism.  But vestiges of that route persist in the system
  for a long time.  Initially, A and C still think they can get to D
  via B.  So, they keep sending updates listing metrics of 3.  In the
  next iteration, B will then claim that it can get to D via either A
  or C.  Of course, it can't.  The routes being claimed by A and C are
  now gone, but they have no way of knowing that yet.  And even when
  they discover that their routes via B have gone away, they each think
  there is a route available via the other.  Eventually the system
  converges, as all the mathematics claims it must.  But it can take
  some time to do so.  The worst case is when a network becomes
  completely inaccessible from some part of the system.  In that case,
  the metrics may increase slowly in a pattern like the one above until
  they finally reach infinity.  For this reason, the problem is called
  "counting to infinity".

  You should now see why "infinity" is chosen to be as small as
  possible.  If a network becomes completely inaccessible, we want
  counting to infinity to be stopped as soon as possible.  Infinity
  must be large enough that no real route is that big.  But it
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  shouldn't be any bigger than required.  Thus the choice of infinity
  is a tradeoff between network size and speed of convergence in case
  counting to infinity happens.  The designers of RIP believed that the
  protocol was unlikely to be practical for networks with a diameter
  larger than 15.

  There are several things that can be done to prevent problems like
  this.  The ones used by RIP are called "split horizon with poisoned
  reverse", and "triggered updates".

2.2.1. Split horizon

  Note that some of the problem above is caused by the fact that A and
  C are engaged in a pattern of mutual deception.  Each claims to be
  able to get to D via the other.  This can be prevented by being a bit
  more careful about where information is sent.  In particular, it is
  never useful to claim reachability for a destination network to the
  neighbor(s) from which the route was learned.  "Split horizon" is a
  scheme for avoiding problems caused by including routes in updates
  sent to the gateway from which they were learned.  The "simple split
  horizon" scheme omits routes learned from one neighbor in updates
  sent to that neighbor.  "Split horizon with poisoned reverse"
  includes such routes in updates, but sets their metrics to infinity.

  If A thinks it can get to D via C, its messages to C should indicate
  that D is unreachable.  If the route through C is real, then C either
  has a direct connection to D, or a connection through some other
  gateway.  C's route can't possibly go back to A, since that forms a
  loop.  By telling C that D is unreachable, A simply guards against
  the possibility that C might get confused and believe that there is a
  route through A.  This is obvious for a point to point line.  But
  consider the possibility that A and C are connected by a broadcast
  network such as an Ethernet, and there are other gateways on that
  network.  If A has a route through C, it should indicate that D is
  unreachable when talking to any other gateway on that network.  The
  other gateways on the network can get to C themselves.  They would
  never need to get to C via A.  If A's best route is really through C,
  no other gateway on that network needs to know that A can reach D.
  This is fortunate, because it means that the same update message that
  is used for C can be used for all other gateways on the same network.
  Thus, update messages can be sent by broadcast.

  In general, split horizon with poisoned reverse is safer than simple
  split horizon.  If two gateways have routes pointing at each other,
  advertising reverse routes with a metric of 16 will break the loop
  immediately.  If the reverse routes are simply not advertised, the
  erroneous routes will have to be eliminated by waiting for a timeout.
  However, poisoned reverse does have a disadvantage: it increases the
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  size of the routing messages.  Consider the case of a campus backbone
  connecting a number of different buildings.  In each building, there
  is a gateway connecting the backbone to a local network.  Consider
  what routing updates those gateways should broadcast on the backbone
  network.  All that the rest of the network really needs to know about
  each gateway is what local networks it is connected to.  Using simple
  split horizon, only those routes would appear in update messages sent
  by the gateway to the backbone network.  If split horizon with
  poisoned reverse is used, the gateway must mention all routes that it
  learns from the backbone, with metrics of 16.  If the system is
  large, this can result in a large update message, almost all of whose
  entries indicate unreachable networks.

  In a static sense, advertising reverse routes with a metric of 16
  provides no additional information.  If there are many gateways on
  one broadcast network, these extra entries can use significant
  bandwidth.  The reason they are there is to improve dynamic behavior.
  When topology changes, mentioning routes that should not go through
  the gateway as well as those that should can speed up convergence.
  However, in some situations, network managers may prefer to accept
  somewhat slower convergence in order to minimize routing overhead.
  Thus implementors may at their option implement simple split horizon
  rather than split horizon with poisoned reverse, or they may provide
  a configuration option that allows the network manager to choose
  which behavior to use.  It is also permissible to implement hybrid
  schemes that advertise some reverse routes with a metric of 16 and
  omit others.  An example of such a scheme would be to use a metric of
  16 for reverse routes for a certain period of time after routing
  changes involving them, and thereafter omitting them from updates.

2.2.2. Triggered updates

  Split horizon with poisoned reverse will prevent any routing loops
  that involve only two gateways.  However, it is still possible to end
  up with patterns in which three gateways are engaged in mutual
  deception.  For example, A may believe it has a route through B, B
  through C, and C through A.  Split horizon cannot stop such a loop.
  This loop will only be resolved when the metric reaches infinity and
  the network involved is then declared unreachable.  Triggered updates
  are an attempt to speed up this convergence.  To get triggered
  updates, we simply add a rule that whenever a gateway changes the
  metric for a route, it is required to send update messages almost
  immediately, even if it is not yet time for one of the regular update
  message.  (The timing details will differ from protocol to protocol.
  Some distance vector protocols, including RIP, specify a small time
  delay, in order to avoid having triggered updates generate excessive
  network traffic.)  Note how this combines with the rules for
  computing new metrics.  Suppose a gateway's route to destination N
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  goes through gateway G.  If an update arrives from G itself, the
  receiving gateway is required to believe the new information, whether
  the new metric is higher or lower than the old one.  If the result is
  a change in metric, then the receiving gateway will send triggered
  updates to all the hosts and gateways directly connected to it.  They
  in turn may each send updates to their neighbors.  The result is a
  cascade of triggered updates.  It is easy to show which gateways and
  hosts are involved in the cascade.  Suppose a gateway G times out a
  route to destination N.  G will send triggered updates to all of its
  neighbors.  However, the only neighbors who will believe the new
  information are those whose routes for N go through G.  The other
  gateways and hosts will see this as information about a new route
  that is worse than the one they are already using, and ignore it.
  The neighbors whose routes go through G will update their metrics and
  send triggered updates to all of their neighbors.  Again, only those
  neighbors whose routes go through them will pay attention.  Thus, the
  triggered updates will propagate backwards along all paths leading to
  gateway G, updating the metrics to infinity.  This propagation will
  stop as soon as it reaches a portion of the network whose route to
  destination N takes some other path.

  If the system could be made to sit still while the cascade of
  triggered updates happens, it would be possible to prove that
  counting to infinity will never happen.  Bad routes would always be
  removed immediately, and so no routing loops could form.

  Unfortunately, things are not so nice.  While the triggered updates
  are being sent, regular updates may be happening at the same time.
  Gateways that haven't received the triggered update yet will still be
  sending out information based on the route that no longer exists.  It
  is possible that after the triggered update has gone through a
  gateway, it might receive a normal update from one of these gateways
  that hasn't yet gotten the word.  This could reestablish an orphaned
  remnant of the faulty route.  If triggered updates happen quickly
  enough, this is very unlikely.  However, counting to infinity is
  still possible.

3. Specifications for the protocol

  RIP is intended to allow hosts and gateways to exchange information
  for computing routes through an IP-based network.  RIP is a distance
  vector protocol.  Thus, it has the general features described in
  section 2.  RIP may be implemented by both hosts and gateways.  As in
  most IP documentation, the term "host" will be used here to cover
  either.  RIP is used to convey information about routes to
  "destinations", which may be individual hosts, networks, or a special
  destination used to convey a default route.
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  Any host that uses RIP is assumed to have interfaces to one or more
  networks.  These are referred to as its "directly-connected
  networks".  The protocol relies on access to certain information
  about each of these networks.  The most important is its metric or
  "cost".  The metric of a network is an integer between 1 and 15
  inclusive.  It is set in some manner not specified in this protocol.
  Most existing implementations always use a metric of 1.  New
  implementations should allow the system administrator to set the cost
  of each network.  In addition to the cost, each network will have an
  IP network number and a subnet mask associated with it.  These are to
  be set by the system administrator in a manner not specified in this
  protocol.

  Note that the rules specified in section 3.2 assume that there is a
  single subnet mask applying to each IP network, and that only the
  subnet masks for directly-connected networks are known.  There may be
  systems that use different subnet masks for different subnets within
  a single network.  There may also be instances where it is desirable
  for a system to know the subnets masks of distant networks.  However,
  such situations will require modifications of the rules which govern
  the spread of subnet information.  Such modifications raise issues of
  interoperability, and thus must be viewed as modifying the protocol.

  Each host that implements RIP is assumed to have a routing table.
  This table has one entry for every destination that is reachable
  through the system described by RIP.  Each entry contains at least
  the following information:

     - The IP address of the destination.

     - A metric, which represents the total cost of getting a
       datagram from the host to that destination.  This metric is
       the sum of the costs associated with the networks that
       would be traversed in getting to the destination.

     - The IP address of the next gateway along the path to the
       destination.  If the destination is on one of the
       directly-connected networks, this item is not needed.

     - A flag to indicate that information about the route has
       changed recently.  This will be referred to as the "route
       change flag."

     - Various timers associated with the route.  See section 3.3
       for more details on them.

  The entries for the directly-connected networks are set up by the
  host, using information gathered by means not specified in this
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  protocol.  The metric for a directly-connected network is set to the
  cost of that network.  In existing RIP implementations, 1 is always
  used for the cost.  In that case, the RIP metric reduces to a simple
  hop-count.  More complex metrics may be used when it is desirable to
  show preference for some networks over others, for example because of
  differences in bandwidth or reliability.

  Implementors may also choose to allow the system administrator to
  enter additional routes.  These would most likely be routes to hosts
  or networks outside the scope of the routing system.

  Entries for destinations other these initial ones are added and
  updated by the algorithms described in the following sections.

  In order for the protocol to provide complete information on routing,
  every gateway in the system must participate in it.  Hosts that are
  not gateways need not participate, but many implementations make
  provisions for them to listen to routing information in order to
  allow them to maintain their routing tables.

3.1. Message formats

  RIP is a UDP-based protocol.  Each host that uses RIP has a routing
  process that sends and receives datagrams on UDP port number 520.
  All communications directed at another host's RIP processor are sent
  to port 520.  All routing update messages are sent from port 520.
  Unsolicited routing update messages have both the source and
  destination port equal to 520.  Those sent in response to a request
  are sent to the port from which the request came.  Specific queries
  and debugging requests may be sent from ports other than 520, but
  they are directed to port 520 on the target machine.

  There are provisions in the protocol to allow "silent" RIP processes.
  A silent process is one that normally does not send out any messages.
  However, it listens to messages sent by others.  A silent RIP might
  be used by hosts that do not act as gateways, but wish to listen to
  routing updates in order to monitor local gateways and to keep their
  internal routing tables up to date.  (See [5] for a discussion of
  various ways that hosts can keep track of network topology.)  A
  gateway that has lost contact with all but one of its networks might
  choose to become silent, since it is effectively no longer a gateway.

  However, this should not be done if there is any chance that
  neighboring gateways might depend upon its messages to detect that
  the failed network has come back into operation.  (The 4BSD routed
  program uses routing packets to monitor the operation of point-to-
  point links.)
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  The packet format is shown in Figure 1.

     Format of datagrams containing network information.  Field sizes
     are given in octets.  Unless otherwise specified, fields contain
     binary integers, in normal Internet order with the most-significant
     octet first.  Each tick mark represents one bit.

      0                   1                   2                   3 3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | command (1)   | version (1)   |      must be zero (2)         |
     +---------------+---------------+-------------------------------+
     | address family identifier (2) |      must be zero (2)         |
     +-------------------------------+-------------------------------+
     |                         IP address (4)                        |
     +---------------------------------------------------------------+
     |                        must be zero (4)                       |
     +---------------------------------------------------------------+
     |                        must be zero (4)                       |
     +---------------------------------------------------------------+
     |                          metric (4)                           |
     +---------------------------------------------------------------+
                                     .
                                     .
                                     .
     The portion of the datagram from address family identifier through
     metric may appear up to 25 times.  IP address is the usual 4-octet
     Internet address, in network order.

                         Figure 1.   Packet format

  Every datagram contains a command, a version number, and possible
  arguments.  This document describes version 1 of the protocol.
  Details of processing the version number are described in section
  3.4.  The command field is used to specify the purpose of this
  datagram.  Here is a summary of the commands implemented in version
  1:

  1 - request     A request for the responding system to send all or
                  part of its routing table.

  2 - response    A message containing all or part of the sender's
                  routing table.  This message may be sent in response
                  to a request or poll, or it may be an update message
                  generated by the sender.

  3 - traceon     Obsolete.  Messages containing this command are to be
                  ignored.
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  4 - traceoff    Obsolete.  Messages containing this command are to be
                  ignored.

  5 - reserved    This value is used by Sun Microsystems for its own
                  purposes.  If new commands are added in any
                  succeeding version, they should begin with 6.
                  Messages containing this command may safely be
                  ignored by implementations that do not choose to
                  respond to it.

  For request and response, the rest of the datagram contains a list of
  destinations, with information about each.  Each entry in this list
  contains a destination network or host, and the metric for it.  The
  packet format is intended to allow RIP to carry routing information
  for several different protocols.  Thus, each entry has an address
  family identifier to indicate what type of address is specified in
  that entry.  This document only describes routing for Internet
  networks.  The address family identifier for IP is 2.  None of the
  RIP implementations available to the author implement any other type
  of address.  However, to allow for future development,
  implementations are required to skip entries that specify address
  families that are not supported by the implementation.  (The size of
  these entries will be the same as the size of an entry specifying an
  IP address.) Processing of the message continues normally after any
  unsupported entries are skipped.  The IP address is the usual
  Internet address, stored as 4 octets in network order.  The metric
  field must contain a value between 1 and 15 inclusive, specifying the
  current metric for the destination, or the value 16, which indicates
  that the destination is not reachable.  Each route sent by a gateway
  supercedes any previous route to the same destination from the same
  gateway.

  The maximum datagram size is 512 octets.  This includes only the
  portions of the datagram described above.  It does not count the IP
  or UDP headers.  The commands that involve network information allow
  information to be split across several datagrams.  No special
  provisions are needed for continuations, since correct results will
  occur if the datagrams are processed individually.

3.2. Addressing considerations

  As indicated in section 2, distance vector routing can be used to
  describe routes to individual hosts or to networks.  The RIP protocol
  allows either of these possibilities.  The destinations appearing in
  request and response messages can be networks, hosts, or a special
  code used to indicate a default address.  In general, the kinds of
  routes actually used will depend upon the routing strategy used for
  the particular network.  Many networks are set up so that routing
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  information for individual hosts is not needed.  If every host on a
  given network or subnet is accessible through the same gateways, then
  there is no reason to mention individual hosts in the routing tables.
  However, networks that include point to point lines sometimes require
  gateways to keep track of routes to certain hosts.  Whether this
  feature is required depends upon the addressing and routing approach
  used in the system.  Thus, some implementations may choose not to
  support host routes.  If host routes are not supported, they are to
  be dropped when they are received in response messages.  (See section
  3.4.2.)

  The RIP packet formats do not distinguish among various types of
  address.  Fields that are labeled "address" can contain any of the
  following:

     host address
     subnet number
     network number
     0, indicating a default route

  Entities that use RIP are assumed to use the most specific
  information available when routing a datagram.  That is, when routing
  a datagram, its destination address must first be checked against the
  list of host addresses.  Then it must be checked to see whether it
  matches any known subnet or network number.  Finally, if none of
  these match, the default route is used.

  When a host evaluates information that it receives via RIP, its
  interpretation of an address depends upon whether it knows the subnet
  mask that applies to the net.  If so, then it is possible to
  determine the meaning of the address.  For example, consider net
  128.6.  It has a subnet mask of 255.255.255.0.  Thus 128.6.0.0 is a
  network number, 128.6.4.0 is a subnet number, and 128.6.4.1 is a host
  address.  However, if the host does not know the subnet mask,
  evaluation of an address may be ambiguous.  If there is a non-zero
  host part, there is no clear way to determine whether the address
  represents a subnet number or a host address.  As a subnet number
  would be useless without the subnet mask, addresses are assumed to
  represent hosts in this situation.  In order to avoid this sort of
  ambiguity, hosts must not send subnet routes to hosts that cannot be
  expected to know the appropriate subnet mask.  Normally hosts only
  know the subnet masks for directly-connected networks.  Therefore,
  unless special provisions have been made, routes to a subnet must not
  be sent outside the network of which the subnet is a part.

  This filtering is carried out by the gateways at the "border" of the
  subnetted network.  These are gateways that connect that network with
  some other network.  Within the subnetted network, each subnet is
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  treated as an individual network.  Routing entries for each subnet
  are circulated by RIP.  However, border gateways send only a single
  entry for the network as a whole to hosts in other networks.  This
  means that a border gateway will send different information to
  different neighbors.  For neighbors connected to the subnetted
  network, it generates a list of all subnets to which it is directly
  connected, using the subnet number.  For neighbors connected to other
  networks, it makes a single entry for the network as a whole, showing
  the metric associated with that network.  (This metric would normally
  be the smallest metric for the subnets to which the gateway is
  attached.)

  Similarly, border gateways must not mention host routes for hosts
  within one of the directly-connected networks in messages to other
  networks.  Those routes will be subsumed by the single entry for the
  network as a whole.  We do not specify what to do with host routes
  for "distant" hosts (i.e., hosts not part of one of the directly-
  connected networks).  Generally, these routes indicate some host that
  is reachable via a route that does not support other hosts on the
  network of which the host is a part.

  The special address 0.0.0.0 is used to describe a default route.  A
  default route is used when it is not convenient to list every
  possible network in the RIP updates, and when one or more closely-
  connected gateways in the system are prepared to handle traffic to
  the networks that are not listed explicitly.  These gateways should
  create RIP entries for the address 0.0.0.0, just as if it were a
  network to which they are connected.  The decision as to how gateways
  create entries for 0.0.0.0 is left to the implementor.  Most
  commonly, the system administrator will be provided with a way to
  specify which gateways should create entries for 0.0.0.0.  However,
  other mechanisms are possible.  For example, an implementor might
  decide that any gateway that speaks EGP should be declared to be a
  default gateway.  It may be useful to allow the network administrator
  to choose the metric to be used in these entries.  If there is more
  than one default gateway, this will make it possible to express a
  preference for one over the other.  The entries for 0.0.0.0 are
  handled by RIP in exactly the same manner as if there were an actual
  network with this address.  However, the entry is used to route any
  datagram whose destination address does not match any other network
  in the table.  Implementations are not required to support this
  convention.  However, it is strongly recommended.  Implementations
  that do not support 0.0.0.0 must ignore entries with this address.
  In such cases, they must not pass the entry on in their own RIP
  updates.  System administrators should take care to make sure that
  routes to 0.0.0.0 do not propagate further than is intended.
  Generally, each autonomous system has its own preferred default
  gateway.  Thus, routes involving 0.0.0.0 should generally not leave
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  the boundary of an autonomous system.  The mechanisms for enforcing
  this are not specified in this document.

3.3. Timers

  This section describes all events that are triggered by timers.

  Every 30 seconds, the output process is instructed to generate a
  complete response to every neighboring gateway.  When there are many
  gateways on a single network, there is a tendency for them to
  synchronize with each other such that they all issue updates at the
  same time.  This can happen whenever the 30 second timer is affected
  by the processing load on the system.  It is undesirable for the
  update messages to become synchronized, since it can lead to
  unnecessary collisions on broadcast networks.  Thus, implementations
  are required to take one of two precautions.

     - The 30-second updates are triggered by a clock whose rate
       is not affected by system load or the time required to
       service the previous update timer.

     - The 30-second timer is offset by addition of a small random
       time each time it is set.

  There are two timers associated with each route, a "timeout" and a
  "garbage-collection time".  Upon expiration of the timeout, the route
  is no longer valid.  However, it is retained in the table for a short
  time, so that neighbors can be notified that the route has been
  dropped.  Upon expiration of the garbage-collection timer, the route
  is finally removed from the tables.

  The timeout is initialized when a route is established, and any time
  an update message is received for the route.  If 180 seconds elapse
  from the last time the timeout was initialized, the route is
  considered to have expired, and the deletion process which we are
  about to describe is started for it.

  Deletions can occur for one of two reasons: (1) the timeout expires,
  or (2) the metric is set to 16 because of an update received from the
  current gateway.  (See section 3.4.2 for a discussion processing
  updates from other gateways.)  In either case, the following events
  happen:

     - The garbage-collection timer is set for 120 seconds.

     - The metric for the route is set to 16 (infinity).  This
       causes the route to be removed from service.
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     - A flag is set noting that this entry has been changed, and
       the output process is signalled to trigger a response.

  Until the garbage-collection timer expires, the route is included in
  all updates sent by this host, with a metric of 16 (infinity).  When
  the garbage-collection timer expires, the route is deleted from the
  tables.

  Should a new route to this network be established while the garbage-
  collection timer is running, the new route will replace the one that
  is about to be deleted.  In this case the garbage-collection timer
  must be cleared.

  See section 3.5 for a discussion of a delay that is required in
  carrying out triggered updates.  Although implementation of that
  delay will require a timer, it is more natural to discuss it in
  section 3.5 than here.

3.4. Input processing

  This section will describe the handling of datagrams received on UDP
  port 520.  Before processing the datagrams in detail, certain general
  format checks must be made.  These depend upon the version number
  field in the datagram, as follows:

     0   Datagrams whose version number is zero are to be ignored.
         These are from a previous version of the protocol, whose
         packet format was machine-specific.

     1   Datagrams whose version number is one are to be processed
         as described in the rest of this specification.  All fields
         that are described above as "must be zero" are to be checked.
         If any such field contains a non-zero value, the entire
         message is to be ignored.

     >1  Datagrams whose version number are greater than one are
         to be processed as described in the rest of this
         specification.  All fields that are described above as
         "must be zero" are to be ignored.  Future versions of the
         protocol may put data into these fields.  Version 1
         implementations are to ignore this extra data and process
         only the fields specified in this document.

  After checking the version number and doing any other preliminary
  checks, processing will depend upon the value in the command field.
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3.4.1. Request

  Request is used to ask for a response containing all or part of the
  host's routing table.  [Note that the term host is used for either
  host or gateway, in most cases it would be unusual for a non-gateway
  host to send RIP messages.]  Normally, requests are sent as
  broadcasts, from a UDP source port of 520.  In this case, silent
  processes do not respond to the request.  Silent processes are by
  definition processes for which we normally do not want to see routing
  information.  However, there may be situations involving gateway
  monitoring where it is desired to look at the routing table even for
  a silent process.  In this case, the request should be sent from a
  UDP port number other than 520.  If a request comes from port 520,
  silent processes do not respond.  If the request comes from any other
  port, processes must respond even if they are silent.

  The request is processed entry by entry.  If there are no entries, no
  response is given.  There is one special case.  If there is exactly
  one entry in the request, with an address family identifier of 0
  (meaning unspecified), and a metric of infinity (i.e., 16 for current
  implementations), this is a request to send the entire routing table.
  In that case, a call is made to the output process to send the
  routing table to the requesting port.

  Except for this special case, processing is quite simple.  Go down
  the list of entries in the request one by one.  For each entry, look
  up the destination in the host's routing database.  If there is a
  route, put that route's metric in the metric field in the datagram.
  If there isn't a route to the specified destination, put infinity
  (i.e., 16) in the metric field in the datagram.  Once all the entries
  have been filled in, set the command to response and send the
  datagram back to the port from which it came.

  Note that there is a difference in handling depending upon whether
  the request is for a specified set of destinations, or for a complete
  routing table.  If the request is for a complete host table, normal
  output processing is done.  This includes split horizon (see section
  2.2.1) and subnet hiding (section 3.2), so that certain entries from
  the routing table will not be shown.  If the request is for specific
  entries, they are looked up in the host table and the information is
  returned.  No split horizon processing is done, and subnets are
  returned if requested.  We anticipate that these requests are likely
  to be used for different purposes.  When a host first comes up, it
  broadcasts requests on every connected network asking for a complete
  routing table.  In general, we assume that complete routing tables
  are likely to be used to update another host's routing table.  For
  this reason, split horizon and all other filtering must be used.
  Requests for specific networks are made only by diagnostic software,
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  and are not used for routing.  In this case, the requester would want
  to know the exact contents of the routing database, and would not
  want any information hidden.

3.4.2. Response

  Responses can be received for several different reasons:

     response to a specific query
     regular updates
     triggered updates triggered by a metric change

  Processing is the same no matter how responses were generated.

  Because processing of a response may update the host's routing table,
  the response must be checked carefully for validity.  The response
  must be ignored if it is not from port 520.  The IP source address
  should be checked to see whether the datagram is from a valid
  neighbor.  The source of the datagram must be on a directly-connected
  network.  It is also worth checking to see whether the response is
  from one of the host's own addresses.  Interfaces on broadcast
  networks may receive copies of their own broadcasts immediately.  If
  a host processes its own output as new input, confusion is likely,
  and such datagrams must be ignored (except as discussed in the next
  paragraph).

  Before actually processing a response, it may be useful to use its
  presence as input to a process for keeping track of interface status.
  As mentioned above, we time out a route when we haven't heard from
  its gateway for a certain amount of time.  This works fine for routes
  that come from another gateway.  It is also desirable to know when
  one of our own directly-connected networks has failed.  This document
  does not specify any particular method for doing this, as such
  methods depend upon the characteristics of the network and the
  hardware interface to it.  However, such methods often involve
  listening for datagrams arriving on the interface.  Arriving
  datagrams can be used as an indication that the interface is working.
  However, some caution must be used, as it is possible for interfaces
  to fail in such a way that input datagrams are received, but output
  datagrams are never sent successfully.

  Now that the datagram as a whole has been validated, process the
  entries in it one by one.  Again, start by doing validation.  If the
  metric is greater than infinity, ignore the entry.  (This should be
  impossible, if the other host is working correctly.  Incorrect
  metrics and other format errors should probably cause alerts or be
  logged.)  Then look at the destination address.  Check the address
  family identifier.  If it is not a value which is expected (e.g., 2
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  for Internet addresses), ignore the entry.  Now check the address
  itself for various kinds of inappropriate addresses.  Ignore the
  entry if the address is class D or E, if it is on net 0 (except for
  0.0.0.0, if we accept default routes) or if it is on net 127 (the
  loopback network).  Also, test for a broadcast address, i.e.,
  anything whose host part is all ones on a network that supports
  broadcast, and ignore any such entry.  If the implementor has chosen
  not to support host routes (see section 3.2), check to see whether
  the host portion of the address is non-zero; if so, ignore the entry.

  Recall that the address field contains a number of unused octets.  If
  the version number of the datagram is 1, they must also be checked.
  If any of them is nonzero, the entry is to be ignored.  (Many of
  these cases indicate that the host from which the message came is not
  working correctly.  Thus some form of error logging or alert should
  be triggered.)

  Update the metric by adding the cost of the network on which the
  message arrived.  If the result is greater than 16, use 16.  That is,

     metric = MIN (metric + cost, 16)

  Now look up the address to see whether this is already a route for
  it.  In general, if not, we want to add one.  However, there are
  various exceptions.  If the metric is infinite, don't add an entry.
  (We would update an existing one, but we don't add new entries with
  infinite metric.)  We want to avoid adding routes to hosts if the
  host is part of a net or subnet for which we have at least as good a
  route.  If neither of these exceptions applies, add a new entry to
  the routing database.  This includes the following actions:

     - Set the destination and metric to those from the datagram.

     - Set the gateway to be the host from which the datagram
       came.

     - Initialize the timeout for the route. If the garbage-
       collection timer is running for this route, stop it. (See
       section 3.3 for a discussion of the timers.)

     - Set the route change flag, and signal the output process to
       trigger an update (see 3.5).

  If there is an existing route, first compare gateways.  If this
  datagram is from the same gateway as the existing route, reinitialize
  the timeout.  Next compare metrics.  If the datagram is from the same
  gateway as the existing route and the new metric is different than
  the old one, or if the new metric is lower than the old one, do the
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  following actions:

     - adopt the route from the datagram.  That is, put the new
       metric in, and set the gateway to be the host from which
       the datagram came.

     - Initialize the timeout for the route.

     - Set the route change flag, and signal the output process to
       trigger an update (see 3.5).

     - If the new metric is 16 (infinity), the deletion process is
       started.

  If the new metric is 16 (infinity), this starts the process for
  deleting the route.  The route is no longer used for routing packets,
  and the deletion timer is started (see section 3.3).  Note that a
  deletion is started only when the metric is first set to 16.  If the
  metric was already 16, then a new deletion is not started.  (Starting
  a deletion sets a timer.  The concern is that we do not want to reset
  the timer every 30 seconds, as new messages arrive with an infinite
  metric.)

  If the new metric is the same as the old one, it is simplest to do
  nothing further (beyond reinitializing the timeout, as specified
  above).  However, the 4BSD routed uses an additional heuristic here.
  Normally, it is senseless to change to a route with the same metric
  as the existing route but a different gateway.  If the existing route
  is showing signs of timing out, though, it may be better to switch to
  an equally-good alternative route immediately, rather than waiting
  for the timeout to happen.  (See section 3.3 for a discussion of
  timeouts.)  Therefore, if the new metric is the same as the old one,
  routed looks at the timeout for the existing route.  If it is at
  least halfway to the expiration point, routed switches to the new
  route.  That is, the gateway is changed to the source of the current
  message.  This heuristic is optional.

  Any entry that fails these tests is ignored, as it is no better than
  the current route.

3.5. Output Processing

  This section describes the processing used to create response
  messages that contain all or part of the routing table.  This
  processing may be triggered in any of the following ways:

     - by input processing when a request is seen.  In this case,
       the resulting message is sent to only one destination.
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     - by the regular routing update.  Every 30 seconds, a
       response containing the whole routing table is sent to
       every neighboring gateway.  (See section 3.3.)

     - by triggered updates.  Whenever the metric for a route is
       changed, an update is triggered.  (The update may be
       delayed; see below.)

  Before describing the way a message is generated for each directly-
  connected network, we will comment on how the destinations are chosen
  for the latter two cases.  Normally, when a response is to be sent to
  all destinations (that is, either the regular update or a triggered
  update is being prepared), a response is sent to the host at the
  opposite end of each connected point-to-point link, and a response is
  broadcast on all connected networks that support broadcasting.  Thus,
  one response is prepared for each directly-connected network and sent
  to the corresponding (destination or broadcast) address.  In most
  cases, this reaches all neighboring gateways.  However, there are
  some cases where this may not be good enough.  This may involve a
  network that does not support broadcast (e.g., the ARPANET), or a
  situation involving dumb gateways.  In such cases, it may be
  necessary to specify an actual list of neighboring hosts and
  gateways, and send a datagram to each one explicitly.  It is left to
  the implementor to determine whether such a mechanism is needed, and
  to define how the list is specified.

  Triggered updates require special handling for two reasons.  First,
  experience shows that triggered updates can cause excessive loads on
  networks with limited capacity or with many gateways on them.  Thus
  the protocol requires that implementors include provisions to limit
  the frequency of triggered updates.  After a triggered update is
  sent, a timer should be set for a random time between 1 and 5
  seconds.  If other changes that would trigger updates occur before
  the timer expires, a single update is triggered when the timer
  expires, and the timer is then set to another random value between 1
  and 5 seconds.  Triggered updates may be suppressed if a regular
  update is due by the time the triggered update would be sent.

  Second, triggered updates do not need to include the entire routing
  table.  In principle, only those routes that have changed need to be
  included.  Thus messages generated as part of a triggered update must
  include at least those routes that have their route change flag set.
  They may include additional routes, or all routes, at the discretion
  of the implementor; however, when full routing updates require
  multiple packets, sending all routes is strongly discouraged.  When a
  triggered update is processed, messages should be generated for every
  directly-connected network.  Split horizon processing is done when
  generating triggered updates as well as normal updates (see below).
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  If, after split horizon processing, a changed route will appear
  identical on a network as it did previously, the route need not be
  sent; if, as a result, no routes need be sent, the update may be
  omitted on that network.  (If a route had only a metric change, or
  uses a new gateway that is on the same network as the old gateway,
  the route will be sent to the network of the old gateway with a
  metric of infinity both before and after the change.)  Once all of
  the triggered updates have been generated, the route change flags
  should be cleared.

  If input processing is allowed while output is being generated,
  appropriate interlocking must be done.  The route change flags should
  not be changed as a result of processing input while a triggered
  update message is being generated.

  The only difference between a triggered update and other update
  messages is the possible omission of routes that have not changed.
  The rest of the mechanisms about to be described must all apply to
  triggered updates.

  Here is how a response datagram is generated for a particular
  directly-connected network:

  The IP source address must be the sending host's address on that
  network.  This is important because the source address is put into
  routing tables in other hosts.  If an incorrect source address is
  used, other hosts may be unable to route datagrams.  Sometimes
  gateways are set up with multiple IP addresses on a single physical
  interface.  Normally, this means that several logical IP networks are
  being carried over one physical medium.  In such cases, a separate
  update message must be sent for each address, with that address as
  the IP source address.

  Set the version number to the current version of RIP.  (The version
  described in this document is 1.)  Set the command to response.  Set
  the bytes labeled "must be zero" to zero.  Now start filling in
  entries.

  To fill in the entries, go down all the routes in the internal
  routing table.  Recall that the maximum datagram size is 512 bytes.
  When there is no more space in the datagram, send the current message
  and start a new one.  If a triggered update is being generated, only
  entries whose route change flags are set need be included.

  See the description in Section 3.2 for a discussion of problems
  raised by subnet and host routes.  Routes to subnets will be
  meaningless outside the network, and must be omitted if the
  destination is not on the same subnetted network; they should be
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  replaced with a single route to the network of which the subnets are
  a part.  Similarly, routes to hosts must be eliminated if they are
  subsumed by a network route, as described in the discussion in
  Section 3.2.

  If the route passes these tests, then the destination and metric are
  put into the entry in the output datagram.  Routes must be included
  in the datagram even if their metrics are infinite.  If the gateway
  for the route is on the network for which the datagram is being
  prepared, the metric in the entry is set to 16, or the entire entry
  is omitted.  Omitting the entry is simple split horizon.  Including
  an entry with metric 16 is split horizon with poisoned reverse.  See
  Section 2.2 for a more complete discussion of these alternatives.

3.6. Compatibility

  The protocol described in this document is intended to interoperate
  with routed and other existing implementations of RIP.  However, a
  different viewpoint is adopted about when to increment the metric
  than was used in most previous implementations.  Using the previous
  perspective, the internal routing table has a metric of 0 for all
  directly-connected networks.  The cost (which is always 1) is added
  to the metric when the route is sent in an update message.  By
  contrast, in this document directly-connected networks appear in the
  internal routing table with metrics equal to their costs; the metrics
  are not necessarily 1.  In this document, the cost is added to the
  metrics when routes are received in update messages.  Metrics from
  the routing table are sent in update messages without change (unless
  modified by split horizon).

  These two viewpoints result in identical update messages being sent.
  Metrics in the routing table differ by a constant one in the two
  descriptions.  Thus, there is no difference in effect.  The change
  was made because the new description makes it easier to handle
  situations where different metrics are used on directly-attached
  networks.

  Implementations that only support network costs of one need not
  change to match the new style of presentation.  However, they must
  follow the description given in this document in all other ways.

4. Control functions

  This section describes administrative controls.  These are not part
  of the protocol per se.  However, experience with existing networks
  suggests that they are important.  Because they are not a necessary
  part of the protocol, they are considered optional.  However, we
  strongly recommend that at least some of them be included in every
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  implementation.

  These controls are intended primarily to allow RIP to be connected to
  networks whose routing may be unstable or subject to errors.  Here
  are some examples:

  It is sometimes desirable to limit the hosts and gateways from which
  information will be accepted.  On occasion, hosts have been
  misconfigured in such a way that they begin sending inappropriate
  information.

  A number of sites limit the set of networks that they allow in update
  messages.  Organization A may have a connection to organization B
  that they use for direct communication.  For security or performance
  reasons A may not be willing to give other organizations access to
  that connection.  In such cases, A should not include B's networks in
  updates that A sends to third parties.

  Here are some typical controls.  Note, however, that the RIP protocol
  does not require these or any other controls.

     - a neighbor list - the network administrator should be able
       to define a list of neighbors for each host.  A host would
       accept response messages only from hosts on its list of
       neighbors.

     - allowing or disallowing specific destinations - the network
       administrator should be able to specify a list of
       destination addresses to allow or disallow.  The list would
       be associated with a particular interface in the incoming
       or outgoing direction.  Only allowed networks would be
       mentioned in response messages going out or processed in
       response messages coming in.  If a list of allowed
       addresses is specified, all other addresses are disallowed.
       If a list of disallowed addresses is specified, all other
       addresses are allowed.
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